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Abstract

Dirac’s method for constrained Hamiltonian systems is used to describe
surfaces of constant Gaussian curvature. A geometrical free energy, for which
these surfaces are equilibrium states, is introduced and interpreted as an action.
An equilibrium surface can then be generated by the evolution of a closed space
curve. Since the underlying action depends on second derivatives, the velocity
of the curve and its conjugate momentum must be included in the set of phase-
space variables. Furthermore, the action is linear in the acceleration of the
curve and possesses a local symmetry—reparametrization invariance—which
implies primary constraints in the canonical formalism. These constraints
are incorporated into the Hamiltonian through Lagrange multiplier functions
that are identified as the components of the acceleration of the curve. The
formulation leads to four first-order partial differential equations, one for each
canonical variable. With the appropriate choice of parametrization, only one
of these equations has to be solved to obtain the surface which is swept out
by the evolving space curve. To illustrate the formalism, several evolutions of
pseudospherical surfaces are discussed.

PACS numbers: 02.40.Hw, 68.55.−a

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Typical soft matter systems exhibit complex behavior at the microscopic level. However, at
macroscopic length scales the relevant degrees of freedom are often purely geometrical.
Classical differential geometry of curves and surfaces constitutes the most appropriate
framework to study the physical properties of these systems [1]. If one or two dimensions of
the material are much smaller than the others, one can apply an effective description in terms
of an elastic theory of low-dimensional continua. Representative examples are polymers such
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as DNA, biological fluid membranes, solid shells, elastic sheets and growing soft thin tissues
[1–4].

In the case of soft thin tissues growth processes induce residual stresses even in the
absence of external loads. These residual stresses are able to change the geometrical structure
of the tissue and can, for instance, induce a shape instability in the growing material [5]. The
resulting shape is given by the minimization of an elastic surface energy which consists of two
terms, one due to bending and one due to stretching. Growth at this level can be interpreted as a
process which fixes the distance between two points on the surface. This implies the existence
of a target metric [6, 7], and therefore (by the Theorema Egregium of Gauss) a prescribed
Gaussian curvature KG of the final surface. In general, the real surface cannot adjust to the
target metric in all of its points and has to stretch. However, if the thin tissue is able to assume
its target configuration, the correct shape can be found by minimizing the bending energy of
the corresponding surface with prescribed metric and Gaussian curvature. Finding surfaces
with a certain Gaussian curvature is thus one important and necessary step to understand such
growth problems.

In this paper, we study surfaces with constant Gaussian curvature (c.G.c.s.). In particular,
surfaces with zero Gaussian curvature are called developable surfaces. They have been largely
discussed in the context of stresses in thin elastic sheets [2, 4, 8–11]. In general, however,
growth generates surfaces with fixed non-zero Gaussian curvature. Typical examples are
flowers [6], plant leaves [12–14] or plastic sheets where the increase of area is induced
artificially by tearing [15, 16]. But not only growth processes can generate these surfaces.
Recently, it has been shown that nematic membranes can buckle into pseudospheres because
of defects in their internal degree of freedom [17]. A pseudosphere is an axisymmetric surface
with Gaussian curvature KG = −1. Accordingly, surfaces of constant negative Gaussian
curvature are also called pseudospherical surfaces. In contrast, when this curvature is positive
the surface is called a spherical surface. Both types of surfaces have been considered from a
mathematical point of view in order to study the connection between differential geometry and
partial differential equations. It is, for instance, well known that certain types of solutions of
solitonic equations such as the sine-Gordon or the Korteweg–de Vries equation are associated
with c.G.c.s. [18–20].

To study the geometrical structure of c.G.c.s., we suppose that the surface is generated
by the motion of a closed curve in time. The approach that we will use here has been used
in the case of fluid membranes [21, 22]. The theoretical background has its origin in general
relativity where it was proposed by Regge and Teitelboim to view the spacetime manifold M
as the trajectory of an extended object (or brane) B embedded in a flat background spacetime
V [23, 24]. In our case, the manifold M is a two-dimensional surface �, the extended object is
a curve C on the surface and the host space is the standard three-dimensional Euclidean space
E

3. The dynamics of the curve is determined by a geometrical action that fixes the Gaussian
curvature of �. However, as a consequence of this geometrical structure the action involves
second derivatives, which implies that the phase space has to be extended: the velocity of
the curve and its respective conjugate momentum have to be included as canonical variables.
Furthermore, we will see that the Lagrangian function is reparametrization invariant and linear
in the acceleration of the curve. This implies that the system is constrained in the phase
space. In order to overcome both difficulties, we will use Dirac’s method which deals with
constrained Hamiltonian systems in a systematic way (for formal aspects see, for example,
[25]).

The general motion of a curve is given by the Frenet–Serret equations. This structure has
been considered in order to study the integrability properties of certain types of geometrical
evolutions [26]. The geometrical evolution is normally expressed by an appropriate law of
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motion where the velocity of the curve is given as a function of its geometrical properties such
as its curvature. Equations of this type allow us to describe different physical problems [20].
In our case, the law for the evolution is given in terms of the acceleration of the curve and not
in terms of the velocity. This is due to the fact that the curve is constrained onto a surface of
constant Gaussian curvature.

This paper is organized as follows. In section 2, we introduce the free energy that describes
a c.G.c.s. Moreover, the geometry of such a surface is decomposed along the tangential basis
adapted to the evolving curve which sweeps out the surface. In section 3, we describe the
phase space that arises as a consequence of this formulation. As mentioned before, not only
the position of the curve must be considered, but also its velocity and the respective conjugate
momenta. These momenta can be identified by examining the response of the free energy
to deformations of the embedding function. The momentum conjugate to the position can
be related to the conserved ‘stresses’ in the surface. In section 4, we construct explicitly the
canonical Hamiltonian by means of the Legendre transformation with respect to both canonical
variables. As we will see in this section, reparametrization invariance manifests itself in the
appearance of constraints in the phase space. The exact evolution of the constrained system
is generated by adding the primary constraints to the canonical Hamiltonian. Secondary
constraints will be introduced in order to satisfy the conservation in time of the primary
constraints. In section 5, we derive Hamilton’s equations of the system and we discuss the
interpretation of the Lagrange multipliers that arise when primary constraints are imposed. In
section 6, we will show some simple examples where singularities of the surface and the curve
become important. We conclude in section 7 with some final remarks on possible applications.

2. Free energy describing surfaces with constant Gaussian curvature

To obtain the shape of a two-dimensional object, one usually minimizes an elastic free surface
energy which depends on the geometrical properties of the material. For example, a fluid lipid
membrane can be modeled as a two-dimensional isotropic continuum that does not resist in-
plane shear. In general, this fluid is assumed to be incompressible. The free energy functional
of a closed membrane is given by [27–29]

FM[X] = κ

2

∫
�

dAK2 + κ̄

∫
�

dAKG + B

∫
�

dAK + σ

∫
�

dA − P

∫
V

dV, (1)

where X(ξ 1, ξ 2) ∈ E
3 is the embedding function that locally defines the surface � of the

membrane as a function of two local coordinates ξa, a ∈ {1, 2}. The two first terms in (1)
correspond to the Willmore functional [30], where K is twice the mean curvature and KG is
the Gaussian curvature. The material parameters κ and κ̄ are the bending rigidity and the
saddle-splay modulus, respectively. Note that the second term in (1) can be dropped since it
is an invariant for a closed surface and thus does not contribute to the determination of the
equilibrium configuration [31]. Constraints are enforced by global Lagrange multipliers: B is
the Lagrange multiplier fixing the total mean curvature, σ is the surface tension which fixes
the area and P is the pressure difference between interior and exterior that has to be maintained
to keep the enclosed volume V constant.

To determine the equilibrium shape of the surface, the response of the free energy to
infinitesimal variations of the embedding function X → X + δX has to be considered
[32, 33],

δF [X] =
∫

�

dA E(N · δX) +
∫

�

dA∇aQ
a, (2)
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Figure 1. Generation of c.G.c.s. � by a moving curve C. The orthonormal vector basis {t, l, N } is
the Darboux frame of the curve on the surface. The geometrical properties of � can be decomposed
into the tangent basis {X ′, Ẋ} adapted to the evolution of the curve.

where N is the unit normal vector of the surface. The second term of this variation is a surface
integral over a divergence of a current Qa and can thus be recast as a boundary integral. It
originates from tangential variations as well as from derivatives of the normal variation and is
related to the effective stresses in the surface. The bulk part of the variation is a surface integral
over the Euler–Lagrange derivative E times the normal projection of the surface variation δX .
Its vanishing determines the equilibrium shape of the interface. Hence, E = 0 is also called
the shape equation which for a lipid membrane reads [32, 34]

−κ

[
∇2K +

K

2
(K2 − 4KG)

]
+ 2BKG + σK − P = 0. (3)

In this paper, we want to study surfaces of constant Gaussian curvature. A close
observation of equation (3) reveals how to construct a geometrical functional which describes
a c.G.c.s.: it is sufficient to include the third and the fifth term of the free energy (1) in the
new functional:

FG[X] :=
∫

�

dAFG = B

∫
�

dAK − P

3

∫
�

dA (N · X), (4)

where B and P are constants and the integral over the volume is rewritten as a surface integral.
The resulting shape equation,

KG = P

2B
, (5)

indeed fixes the Gaussian curvature of the surface locally. Note that the corresponding
boundary integral in (2) does not vanish in general since the surfaces we consider are not
closed [35].

It is important to stress that FG is not a free energy obtained from elasticity theory like the
free energy FM of the fluid membrane. Its equilibrium states (i.e., surfaces of constant Gaussian
curvature) can nevertheless be found in analogy with the case of a fluid membrane using a
Hamiltonian formulation. Even though the two cases are closely related, the Hamiltonian
formulation of the membrane can only be partially translated into c.G.c.s. as we will see in the
following. A c.G.c.s. will be generated by the evolution of a closed curve C that is parametrized
by u (see figure 1). If we parametrize its evolution in time by t, the resulting surface � will
be given by X(u, t). Since the curve stays always on the surface, the expressions for the
tangential vector X ′ = ∂X/∂u = ∂uX and the velocity Ẋ = ∂X/∂t = ∂tX are given by

X ′ =
√

ht, Ẋ = αX ′ + βl, (6)
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where t is the unit tangent vector of the curve at fixed time t, l is the unit vector normal to
the curve and tangential to the surface, and h = X ′ ·X ′ is the metric of the curve (see again
figure 1). The functions α and β can be written in terms of the derivatives of the curve:

α = h−1(Ẋ ·X ′), β2 = Ẋ
2 − h−1(Ẋ · X ′)2. (7)

This is the analog of the ADM decomposition in general relativity [36]. The geometrical
properties of the surface � can be decomposed along a surface basis adapted to the curve. If
we take e1 = X ′ and e2 = Ẋ as the tangent vectors of the surface, the metric adopts the
following form:

gab := ea · eb =
(

h αh

αh α2h + β2

)
, where a, b ∈ {1, 2}. (8)

The determinant of this induced metric follows directly: g = β2h. The normal vector of � is
given by the cross product of the tangent vectors t and l: N = t × l = e1 × e2/(β

√
h). The

extrinsic curvature tensor Kab can also be decomposed along e1 and e2. One obtains

Kab := −N · ∂aeb = −
(

N ·X ′′ N · Ẋ ′

N · Ẋ ′ N · Ẍ

)
. (9)

Note that the curvature tensor depends on the acceleration of the curve projected along the
normal direction. The curvature K = Tr

(
Kb

a

)
and the Gaussian curvature KG = det

(
Kb

a

)
are the invariants of the mixed extrinsic curvature tensor Kb

a = Kacg
cb. As usual, repeated

indices—one up and one down—imply a summation. In this decomposition the invariants are
given by

K = 1

β2
(−N · Ẍ + JK), (10a)

KG = 1

g
[(N · Ẍ)(N · X ′′) − JG], (10b)

where the functions JK and JG do not depend on the acceleration Ẍ of the curve:

JK = 2α(N · Ẋ ′) − h−1(Ẋ)2(N · X ′′), (11a)

JG = (N · Ẋ ′)2. (11b)

3. Identification of the phase-space variables

The conventional shape equation involves the metric gab and the extrinsic curvature tensor
Kab. Using a Hamiltonian formulation the shape equation can be rewritten in terms of the
evolving curve X(u, t). This alternative structure offers a true advantage if one wants to find
equilibrium solutions numerically. To identify the appropriate phase-space variables of this
formulation, we express the free energy (4) as an action functional that contains the dynamics
of X(u, t) in time:

FG[X] =
∫

dt L[X, Ẋ, Ẍ], L[X, Ẋ, Ẍ] =
∮

duL[X, Ẋ, Ẍ,X ′,X ′′, Ẋ ′], (12)

where the Lagrangian density functional is given by

L = β
√

h

[
B

β2
(−N · Ẍ + JK) − P

3
N ·X

]
. (13)
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This Lagrangian density depends implicitly on the embedding function X and the normal
vector N . It is of second order in time derivatives of X . Since L is linear in the
acceleration Ẍ , one could perform an integration by parts within the action to eliminate this
dependence. Instead we will use the method for constrained Hamiltonian systems to proceed
[25]. The strategy in this section follows directly along the lines of the fluid membrane case
[22]. Differences will only become apparent later when the constraints on the system are
investigated.

As a direct consequence of the acceleration dependence, the phase space contains not only
the position of the curve X(u, t) and its conjugate momentum p(u, t), but also the velocity
of the curve Ẋ(u, t) and its conjugate momentum Π(u, t). The momenta are defined by the
functional derivatives:

Π = δL

δẌ
, (14)

p = δL

δẊ
− ∂t

(
δL

δẌ

)
. (15)

The canonical momentum conjugate to the velocity can be immediately obtained from
equation (13):

Π = −B

√
h

β
N . (16)

One can show that the other canonical momentum p is related to the conserved ‘stress’ of the
surface � [22]. Since (4) does not represent the physical elastic free energy of a c.G.c.s. but is
merely a geometrical functional, this ‘stress’ does not have a physical meaning like in the case
of a lipid membrane. We will nevertheless use the same terminology to make the connection
with previous work [22].

For a Lagrangian which depends on the acceleration like (12), the first variation can be
written as

δF [X] =
∫

�

dA E(N · δX) +
∮
C

du(p · δX + Π · δẊ). (17)

In the case of a c.G.c.s., the Euler–Lagrange derivative is given by E = 2BKG − P . On the
other hand, the first variation is also given by equation (2),

δF [X] =
∫

�

dA E(N · δX) +
∮
C

du
√

h laQ
a, (18)

where the divergence term was rewritten as a boundary integral using the Stokes theorem. The
quantities la are the components of the vector l = laea in the surface basis (see figure 1). The
current Qa depends on the stress-like surface tensor f a in the form [37]

Qa = −f a · δX −
(

δFG

δKab

)
N · δeb, (19)

where FG is the free energy density of (4). In general, the tensor f a has components tangential
and normal to the surface. In the present case, it is given by

f a =
[
B(Kab − Kgab) +

P

3
gab(N ·X)

]
eb − P

3
gab(X ·eb)N . (20)

The divergence of this tensor can be used to write the shape equation (5) in the following form
[37]:

∇af
a = 1

3PN . (21)

6
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Comparing the two versions (17) and (18) of the variation one can identify the terms
proportional to δX and obtain the following expression for the canonical momentum conjugate
to the position:

p = −
√

h laf
a + ∂u(αΠ), (22)

= B
√

h(Kgab − Kab)laeb − P

3
(X × X ′) + ∂u(αΠ). (23)

Note that the term proportional to P in the free energy introduces a normal component in the
vector f a . We anticipate that it will also cause a source term in the Hamilton equation for the
canonical momentum p.

Both p and Π transform as a density under reparametrizations of the surface. By using
the completeness of the metric and the surface tangent vectors gab = tatb + lalb, one can
demonstrate that the canonical momentum p is independent of the acceleration of the curve.
Its expression as a function of the canonical variables is

p = Bh−1/2β−1[(N · Ẋ ′)X ′ − (N · X ′′)Ẋ] − P

3
(X × X ′) + ∂u(αΠ). (24)

Both canonical momenta are only functions of X, Ẋ , and their spatial derivatives, i.e., the
phase-space variables are not all independent at a fixed time t. As a consequence, there are
constraints on the system that have to be incorporated in the Hamiltonian formulation of the
problem.

4. The constrained Hamiltonian

We perform the Legendre transformation of the Lagrangian (12) with respect to the velocity
Ẋ and the acceleration Ẍ:

Hc[X,p; Ẋ,Π] :=
∮

duHc =
∮

du (Π · Ẍ + p · Ẋ) − L[X, Ẋ, Ẍ], (25)

and obtain the canonical Hamiltonian density of the system:

Hc =
[
p · Ẋ −

√
h

β
BJK +

P

3
β
√

h(N ·X)

]
. (26)

Note that the dependence on Π is automatically eliminated. This is due to the fact that the
Lagrangian is linear in the acceleration Ẍ and implies that the resulting Hamilton’s equations
are inconsistent. Following Dirac’s method [25], one can, however, overcome this obstacle by
imposing relation (16) involving Π as a constraint on the system. The projections along the
basis {X ′, Ẋ,N } yield a set of the so-called primary constraints:

C1 = Π · X ′ ≈ 0, (27a)

C2 = Π · Ẋ ≈ 0, (27b)

C3 = Π · N + B
√

hβ−1 ≈ 0. (27c)

The weak equality symbol ≈ means that the quantities Ci are zero on shell (i.e., when the
equations of motion are satisfied) but do not identically vanish throughout the whole phase
space. A quantity Q in phase space is thus weakly equal to a quantity W if they are only
different by a linear combination of the constraints.

7
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The total Hamiltonian can be obtained by generalizing the canonical Hamiltonian to

HT = Hc +
∮

du (λ1C1 + λ2C2 + λ3C3), (28)

where λi are the Lagrange multiplier functions of the coordinates u and t enforcing the
constraints (27). For the formalism to be consistent, we require that the conservation in time
of the primary constraints vanish:

Si∂tCi = {Ci,HT} ≈ 0, (29)

where the Poisson bracket {·, ·} is given by

{Q,W } =
∮

du

[(
δQ

δX
· δW

δp
+

δQ

δẊ
· δW

δΠ

)
−

(
δW

δX
· δQ

δp
+

δW

δẊ
· δQ

δΠ

)]
(30)

for two phase-space quantities Q and W . The resulting secondary constraints are the generators
of gauge invariances of the system. They are expressed by

S1 = p · X ′ + Π · Ẋ ′ ≈ 0, (31a)

S2 = −Hc = −p · Ẋ +

√
h

β
BJK − P

3
β
√

h(N ·X) ≈ 0, (31b)

S3 = −p ·N +
P

3

√
h(l ·X) + ∂u(αΠ) · N ≈ 0. (31c)

The secondary constraints (31a) and (31b) reflect the reparametrization invariance of the
initial free energy FG: the constraint S1 generates the reparametrizations tangential to the curve
C whereas S2 generates reparametrizations out of the curve. The latter is equivalent to the
vanishing of the canonical Hamiltonian density as one would expect. With the two constraints
the tangential part of the momentum p is determined completely. The secondary constraint S3

additionally fixes its normal component. In appendix A, we show exemplarily how it can be
derived.

At this point, it is instructive to consider the equivalent formulation for the fluid membrane
again [22]. The structure of the first two primary and secondary constraints C1, C2, S1 and S2

is the same in both cases since the free energy functional (1) of the fluid membrane, FM, is
reparametrization invariant as well. The constraints C3 and S3, however, are characteristic for
a system with a Lagrangian linear in the acceleration (for another example see [38]). They do
not enter in the case of the membrane since FM is nonlinear in the acceleration Ẍ .

In fact, for a c.G.c.s. both momenta are fixed completely by the constraints. The
independent degrees of freedom are the position X and the velocity Ẋ . The equations that
finally determine the evolution of the curve and, therefore, the surface will be two first-order
equations, a trivial one for the position and another one for the velocity.

5. Hamilton’s equations

From the constrained Hamiltonian (28), the following set of Hamilton’s equations is obtained:

∂tX = δHT

δp
, ∂tẊ = δHT

δΠ
, ∂tΠ = −δHT

δẊ
, ∂tp = −δHT

δX
. (32)

The first equation of (32) allows us to identify the canonical variable Ẋ (i.e., the velocity of
the curve) with the time derivative of the variable X:

∂tX = Ẋ. (33)

8
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Since the Hamiltonian (28) depends on Π only in the terms involving the constraints, the
second equation is given by

∂tẊ = λ1X
′ + λ2Ẋ + λ3N . (34)

This is the principal equation which describes the evolution of the curve. It identifies the
Lagrange multipliers; they are equivalent to the three components of the acceleration Ẍ of
the curve in the basis {X ′, Ẋ,N }. The third equation in (32) is

∂tΠ = −d − λ2Π + λ3

√
hβ−2Bl + λ3β

−1(Π · l)N , (35)

where d := δHc/δẊ is as given in equation (A.4) and just depends on the canonical variables.
It is possible to show that equation (35) coincides with the expression (22) of the canonical
momentum p. Modulo the other Hamilton equations, the fourth equation can be identified
with the vectorial form (21) of the shape equation (5), which in this case is expressed in terms
of the canonical variables of the problem:

∂tp = −
√

hβ
P

3
N + ∂u{m + ∂u[h−1(Ẋ)2Π] + λ1Π + λ3S}. (36)

The equivalence to the shape equation is shown in appendix B together with the definitions of
the vectors m and S. Note that equation (36) has the form of a continuity equation with a
source term given by the explicit presence of the position vector X in the Hamiltonian.

Equation (34) and the definition of the Gaussian curvature (10b) allow us to write the
third Lagrange multiplier λ3 as a function of X ′, Ẋ , and their spatial derivatives X ′′ and Ẋ ′.
We obtain

λ3 = (N ·X ′′)−1[(N · Ẋ ′)2 + gKG], (37)

where KG = P/2B is given by the shape equation (5). The two other Lagrange multipliers
λ1 and λ2 are the tangential components of the acceleration Ẍ . Using equation (34) and the
expressions from section 2 one finds

λ1 = h−1(Ẍ ·X ′ − αhλ2), (38)

λ2 = β−2[(Ẍ · Ẋ) − α(Ẍ · X ′)]. (39)

The projections of the acceleration onto the surface basis vectors {X ′, Ẋ} can be expressed
in terms of derivatives of the components of the metric tensor (8):

A1 := Ẍ ·X ′ = ∂t (αh) − 1
2∂u(Ẋ

2
) = ġ12 − 1

2g′
22 and (40)

A2 := Ẍ · Ẋ = 1
2∂t (Ẋ

2
) = 1

2 ġ22, (41)

yielding an alternative expression for each of the two multipliers

λ1 = g1aAa = 1

g

[
g22

(
ġ12 − 1

2
g′

22

)
− 1

2
g12 ġ22

]
and (42)

λ2 = g2aAa = 1

g

[
−g12

(
ġ12 − 1

2
g′

22

)
+

1

2
g11 ġ22

]
. (43)

These multipliers represent the gauge part of the evolution. Choosing values for them
corresponds to fixing the parametrization of the surface. Note that this choice solely determines
how the curve evolves. The underlying c.G.c.s., however, is already completely determined
by the initial conditions. We will discuss this point in detail in the following section in the
context of pseudospherical surfaces.

9
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For example, if we choose an arc length parametrization for the coordinate lines of
the surface (i.e., all curves of t = cst and u = cst), the components of the metric read
g11 = g22 = 1 and g12 = cos θ , where θ(u, t) is the angle between the velocity Ẋ and the
tangent X ′ of the curve C. From equations (42) and (43) one then obtains λ1 = −θ̇ csc θ and
λ2 = θ̇ cot θ for the Lagrange multiplier functions.

Since λ1 and λ2 are completely arbitrary they can also be chosen to vanish. In this case,
the equation that needs to be solved simplifies to

∂ttX = λ3N , (44)

with λ3 given by equation (37). Note that this is a nonlinear partial differential equation for
X of second order in space and in time written in the form ∂ttX = F [X ′, Ẋ, Ẋ ′,X ′′].

The formulation discussed in this paper is particularly useful to determine c.G.c.s.
numerically. The initial condition for equation (33) is a closed curve in space X(u, ti) at
initial time ti. This implies that the embedding function and its first and second spatial
derivatives are functions periodic in u. Additionally, the initial velocity of the curve Ẋ(u, ti)

has to be specified as the initial condition for equation (34). The canonical momenta follow
directly from the primary and secondary constraints (27) and (31). The Lagrange multipliers
λ1 and λ2 can be chosen arbitrarily fixing the parametrization of the curve. If they are set
to zero, the tangential projections A1 and A2 of Ẍ vanish. From equation (41) it follows
directly that the length of Ẋ is preserved in time for a fixed u. To ensure, for example, that
the parameter t is equivalent to arc length, it is thus sufficient to choose |Ẋ(u, ti)| = 1. If we
now let the curve evolve according to Hamilton’s equations, a c.G.c.s. will be generated.

6. Singularities in the evolution

To illustrate our findings, we will specifically consider surfaces of negative Gaussian curvature
KG = −1. A simple axisymmetric example is the pseudosphere (see figure 2). It is the surface
of revolution of the so-called tractrix around its asymptote [20]. Due to the symmetry we
choose to parametrize the surface in polar coordinates X(u, t) = (x(u, t), y(u, t), z(u, t))T =
(R(t) cos(u), R(t) sin(u), Z(t))T. An analytical expression for R(t) and Z(t) is given
by [20]

R(t) = sech(t), (45a)

Z(t) = t − tanh(t). (45b)

The same parametrization can be used for the generating curve if we start with a planar
circle of radius R(ti) at height Z(ti) and velocity components VR(ti) and VZ(ti), where

VR(t) = −sech(t) tanh(t) and (46a)

VZ(t) = tanh2(t) (46b)

are obtained directly from equations (45). In this decomposition, the metric is given by

g11 = sech2(t), g12 = 0 and g22 = tanh2(t). (47)

Note that both parameters, u and t, do not directly measure the arc length of the coordinate
lines. From equations (16) and (24) one easily obtains the components of the conjugate
momenta:

�R(t) = −B sech(t), �Z(t) = −2B csch(2t) (48)

10
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z

t

Figure 2. The pseudosphere. The black curves represent the evolving circular curve at different
times t (ti = 0.2, tf = 2.2,t = 0.4). The blue curves show a different evolution on the same
surface with changed initial velocity (Vt = 0.03, ti = 0.1, tf = 9.9,t = 2.45).

and

pR(t) = −B

3
sech(t)[2t + tanh(t)], pZ(t) = B

3
[3 − sech2(t)]. (49)

Finally, the Lagrange multiplier functions of this parametrization are given by the following
expressions:

λ1(t) = 0, λ2(t) = sech(t)csch(t) and λ3(t) = sech(t) tanh(t). (50)

One immediately sees that the acceleration of the evolving curve is not purely normal but has
an additional tangential component in the direction of Ẋ . The black curves in figure 2 show
one example of an evolution with initial time ti = 0.2 and final time tf = 2.2. For tf → ∞ the
evolving circle converges to a point at infinity. If ti is chosen negative, however, the evolution
will always terminate at t = 0 since the velocity (46) of the curve goes to zero. This behavior
is due to a singularity of the surface, the circular cusp, where the curvature K diverges.

In fact, pseudospherical surfaces will always exhibit singularities since the hyperbolic
plane cannot be immersed completely into E3 [39]. Typically, these singularities are cuspidal
edges that can exhibit cusps themselves (the so-called swallowtail points). As soon as the
curve reaches a surface singularity in at least one point, the evolution terminates.

To illustrate this behavior, we perturb the initial planar circle into an ellipse parametrized
by

X(u, ti) = (a0 cos(u), b0 sin(u), 0)T , (51)

where a0 and b0 are constant and positive. Moreover, we start with an axisymmetric initial
velocity given in the form

Ẋ(u, ti) = (
V0

R cos(u),V0
R sin(u),V0

Z

)T
. (52)

11
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t

Figure 3. Pseudospherical surface generated by the evolution of an ellipse. Black curves represent
this evolution in time (time step t = 1.05). The numerical values for the initial conditions are
a0 = 1.1, b0 = 1.4,V0

R = −0.3 and V0
Z = 0.1. Initial and final times are given by ti = 0 and

tf = 6.3, respectively.

Since no analytical solution is known, Hamilton’s equations (32) have to be solved numerically.
To simplify the numerical integration, the Lagrange multipliers λ1 and λ2 are chosen to vanish.
In figure 3, we show one example of a surface produced by the evolution of the curve with
the initial conditions (51) and (52). For increasing t the ellipse deforms and seems to turn
by 90◦. At tf = 6.3 the evolution stops because the curve reaches a cuspidal edge of the
underlying surface. This is not evident from the figure but can be observed directly by looking
at the curvature K of the surface which diverges in four points on the curve. At what point(s)
the curve reaches the surface singularity first depends on the choice of λ1, λ2 and the initial
conditions. For instance, if we had taken other values for the Lagrange multiplier functions λ1

and λ2, the same initial conditions would have generated a different part of the same surface
since the curve would have reached other points of the cuspical singularity first.

The evolution can also terminate because the curve itself develops a singularity. This
effect can be observed by looking at the pseudosphere again (see the blue curves in figure 2).
We keep the planar circle as an initial curve but take a velocity which has a varying tangential
component proportional to X ′(u, ti):

Ẋ(u, ti) = (VR(ti) cos(u) − Vt sin2(u), VR(ti) sin(u) + Vt cos(u) sin(u), VZ(ti))
T, (53)

where VR(ti) and VZ(ti) are given by equations (46). Furthermore, we set λ1 and λ2 to zero
again. The generated surface is still the pseudosphere. However, during the course of the
evolution the initially planar curve begins to deform and develops a singularity in its geodesic
curvature even though the underlying pseudosphere is smooth (see figure 2 again).

The initial velocity must thus be carefully tuned to avoid these kinds of problems: Ẋ(u, ti)

should be chosen perpendicular to the initial curve in every point. After a small time step t

the current curve can then be used as a new initial curve with an adapted initial velocity to
ensure that the evolution stays perpendicular to the curve at all times. The same result can be
obtained more easily if one sets λ1 = −g12/

√
g11g22. This adds a tangential component to Ẍ

opposing an eventual tilt of the velocity vector out of the direction perpendicular to the curve.
With this choice of λ1 even the evolution with the initial velocity (53) will not develop the
singularity shown in figure 2. The curve stays nearly planar instead and sweeps out the whole
upper domain of the pseudosphere.

12
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7. Conclusions

We have presented a Hamiltonian formulation for the construction of constant Gaussian
curvature surfaces. In this approach, the geometry of the surface is reconstructed from the
evolution of a closed curve in three-dimensional Euclidean space. This evolution is determined
by an appropriate geometrical energy functional which is interpreted as an action. The final
equation that has to be solved is of second order in the position vector. The formalism is
general and allows us to describe surfaces without any symmetry. It is particularly useful if
one wants to construct these surfaces numerically. To this end, the initial conditions and the
tangential components of the acceleration have to be properly adjusted to avoid singularities
in the evolving curve. Surfaces of negative constant Gaussian curvature additionally exhibit
singularities themselves which cause the evolution to stop. Tuning the conditions to find a
whole cuspidal edge of the surface requires further studies but is straightforward.

The approach can, for example, be applied to a growing thin sheet where growth imposes
the Gaussian curvature on the surface. As long as the sheet is able to assume its target
configuration no stretching will occur. The correct shape of the surface at a certain time
t can then be found by minimizing the bending energy in the subset of surfaces that obey
the initial conditions [4]. Singularities that occur during the evolution imply that the target
configuration cannot be immersed completely into E

3 any more. A combination of stretching
and bending will then have to accommodate the constraints imposed by growth and elasticity.
The presented work paves the way for treating such physical problems since it offers one
tractable method to determine isometric immersions of the surface numerically.
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Appendix A. Derivation of the third secondary constraint

The third secondary constraint S3 is given by the time derivative of the third primary constraint
C3 (see section 4):

S3 = ∂tC3 = {C3,HT} , (A.1)

where the Poisson bracket {·, ·} is as defined in equation (30). This expression can be simplified
to

S3 = −N · δHc

δẊ
+ Ẋ ′ · ∂C3

∂X ′ . (A.2)

After some calculations, we obtain the following expression for the partial derivative of C3

with respect to X ′:

∂C3

∂X ′ = Bh−1/2β−1X ′ + Bα
√

hβ−2l. (A.3)
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The functional derivative of Hc with respect to Ẋ is

δHc

δẊ
= p − B

√
hβ−1j0 + B

√
hβ−2JK l +

P

3

√
h(N ·X)l

− P

3

√
h(l ·X)N + ∂u(2αB

√
hβ−1N ), (A.4)

where JK is given by equation (11a) and j0 by

j0 = 2h−1(N · Ẋ ′)X ′ − 2αβ−1(Ẋ ′ · l)N − 2h−1(N ·X ′′)Ẋ + h−1β−1(Ẋ)2(l · X ′′)N .

(A.5)

The last term in equation (A.4) is proportional to the canonical momentum Π conjugate to the
velocity of the curve Ẋ . Note that only the normal components of equation (A.4) are needed
to calculate S3. After some simplifications we obtain

S3 = −p ·N +
P

3

√
h(l ·X) + 2∂u(αΠ)N + �3, (A.6)

where the last term �3 is given by

�3 = B
√

hβ−1(j0 · N ) + Bh−1/2β−1(X ′ · Ẋ ′) + Bαβ−2(l ·X ′′). (A.7)

Using the definition (A.5) of j0 one can simplify �3:

�3 = −∂u(αΠ ·N ) (A.8)

= −∂u(αΠ) · N + αBβ−1
√

hN · ∂uN . (A.9)

The last term in (A.9) is zero because ∂uN is orthogonal to N . If we insert the result for �3

in equation (A.6), we finally obtain

S3 = −p ·N +
P

3

√
h(l ·X) + ∂u(αΠ) · N , (A.10)

which is the expression given in equation (31c).

Appendix B. Definitions and calculations concerning the fourth of Hamilton’s equations

For the fourth of Hamilton’s equations, equation (36), we define the vectors

m = −h−1/2β−1BJKX ′ − α
√

hβ−2BJKl −
√

hβ−1Bj1 − P

3
(X × Ẋ), where (B.1)

j1 = 2h−1(N · Ẋ ′)(βl − αX ′) + 2α2β−1(l · Ẋ ′)N − 2αh−1(X ′ · Ẋ ′)N

+ 2h−2(Ẋ)2(N ·X ′′)X ′ − αβ−1h−1(Ẋ)2(l · X ′′)N + h−2(Ẋ)2(X ′ ·X ′′)N (B.2)

and

S = Π · (αβ−1l − h−1X ′)N + h−1/2β−1BX ′ + α
√

hβ−2Bl. (B.3)

Note that both vectors are expressed in terms of the canonical variables X, Ẋ,p and Π.
In the following, we explain how to show that the fourth equation (36) of the Hamiltonian

system and the vectorial version (21) of the shape equation (5) are equivalent (modulo the
other Hamilton equations). We start by writing the divergence of f a in terms of its projections
f ‖ = taf

a and f⊥ = laf
a:

∇af
a = g−1/2∂a(f

a√g) = g−1/2[∂u(βf ‖ − α
√

hf⊥) + ∂t (
√

hf⊥)]. (B.4)
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Inserting equation (22) into this expression, the shape equation (21) can be written as

∂tp = −P

3
√

gN + ∂uM 1, where (B.5)

M 1 = ∂t (αΠ) + βf ‖ − α
√

hf⊥. (B.6)

To prove the equivalence to equation (36), we have to show that M 1 = M 2 with
M 2 = m + ∂u[h−1(Ẋ)2Π] + λ1Π + λ3S. One way to do this is to project M 1 and M 2 onto
the basis {t, l,N } and compare the results. We will exemplarily discuss the projections on
N . For the first vector we obtain

M 1 · N = −P

3
(X × Ẋ)N − ∂t (αB

√
hβ−1). (B.7)

The projection of the second vector is given by

M 2 · N = −P

3
(X × Ẋ)N − B

√
hβ−1j1 · N

+ ∂u[h−1(Ẋ)2(−B
√

hβ−1)] + λ1(−B
√

hβ−1). (B.8)

The equivalence of the terms involving P is obvious. To compare the remaining terms, all
scalar products involving X and its derivatives have to be written in terms of the functions
α, β and h, e.g., Ẋ

2 = α2h + β2 or X ′ ·X ′′ = √
h(∂u

√
h). One obtains

j1 · N = −2α∂uα + (h−3/2β2 − α2h−1/2)∂u

√
h

+ (α3
√

hβ−2 + αh−1/2)[∂u(α
√

h) − ∂t (
√

h)] + 2α2β−1∂uβ (B.9)

and

λ1 = ∂tα + α∂uα + α2h−1/2∂u

√
h − (α3

√
hβ−2 + 2αh−1/2)[∂u(α

√
h) − ∂t (

√
h)]

− (h−1β + α2β−1)∂uβ − αβ−1∂tβ. (B.10)

If we insert these results into equation (B.8), its right-hand side simplifies and equals the
right-hand side of equation (B.7) as expected. The equality of the tangential projections is
shown in the same way.
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